Предмет: Геометрия, автор: остроум2

Бисектриса прямого угла прямоугольного треугольника делит гипотенузу на отрезки 30см и 40см. найти площадь треугольника.

Ответы

Автор ответа: Guppy2016
0
Биссектриса делит сторону на отрезки, пропорциональные двум другим сторонам.
Значит, первый катет  30х,второй  40х, гипотенуза 70(40+30).
По т. пифагора найдем х:
 70^{2} = (30x)^{2} + (40x)^{2}
4900=900 x^{2} +1600 x^{2}
4900=2500 x^{2}
 x^{2} =1.96
x=1.4
Первый катет:
1.4*30=42
Второй катет:
1.4*40=56
Площадь прямоугольного треугольника находится по формуле:
S= frac{a*b}{2}
a,b-катеты
S= frac{56*42}{2}
S=56*21
S=1176
Похожие вопросы
Предмет: Математика, автор: arhivarhivation
Предмет: Алгебра, автор: vitaliyzuev100