Предмет: Математика,
автор: voldemortnukus12
объяснитеееееее пожалуйстааааааааа
Приложения:
Ответы
Автор ответа:
0
Рассмотрим функцию f(x)=x^2+(5-a)x+22-11a+a^2. Ее можно представить в виде произведения (x-x1)(x-x2), где x1 и x2 - корни уравнения f(x)=0, причем x1 < x2.
По условию, x1 < 2, x2 > 2. Тогда значение функции в точке 2 будет:
f(2) = (2-x1)*(2-x2) < 0. Этим и воспользуемся.
f(2) = 2^2 + (5-a)*2 + 22-11a+a^2 = a^2-13a+36=(a-4)(a-9) < 0.
Поэтому a∈(4;9).
По условию, x1 < 2, x2 > 2. Тогда значение функции в точке 2 будет:
f(2) = (2-x1)*(2-x2) < 0. Этим и воспользуемся.
f(2) = 2^2 + (5-a)*2 + 22-11a+a^2 = a^2-13a+36=(a-4)(a-9) < 0.
Поэтому a∈(4;9).
Похожие вопросы
Предмет: Математика,
автор: grika2007
Предмет: Другие предметы,
автор: anatimosuk33
Предмет: Английский язык,
автор: Аноним
Предмет: История,
автор: susanna1333
Предмет: Биология,
автор: Ktutaev