Предмет: Математика,
автор: Аноним
график функции log2 (x-с)+d получается из графика функции log2 (x-2)+4параллельным переносом на 5 единиц влево и на 5единиц вниз найдите c+d
Ответы
Автор ответа:
0
1) Сделаем параллельный перенос графика функции f(x)=log2(x-2)+4 на 5 единиц влево. Получим график функции g(x)=log2(x-2+5)+4=log2(x+3)+4
2) Сделаем параллельный перенос графика функции g(x)=log2(x+3)+4 на 5 единиц вниз. Получим h(x)=log2(x+3)+4-5=log2(x+3)-1
h(x)=log2(x+3)-1=log2(x-c)+d
Отсюда c=-3, d=-1, c+d=-4.
2) Сделаем параллельный перенос графика функции g(x)=log2(x+3)+4 на 5 единиц вниз. Получим h(x)=log2(x+3)+4-5=log2(x+3)-1
h(x)=log2(x+3)-1=log2(x-c)+d
Отсюда c=-3, d=-1, c+d=-4.
Похожие вопросы
Предмет: Математика,
автор: shizukilove15
Предмет: Алгебра,
автор: hgsdhngfbd
Предмет: История,
автор: katushatim
Предмет: История,
автор: nastja19592004
Предмет: Алгебра,
автор: Аноним