Предмет: Математика, автор: Lizza1997

Очень прошу, решите пожалуйста дифференциальное уравнение : xy'-2y=x^3+3

Ответы

Автор ответа: NNNLLL54
0
xy'-2y=x^3+3\\y'-frac{2}{x}cdot y=x^2+frac{3}{x}\\y=uv\\u'v+uv'-frac{2}{x}cdot uv=x^2+frac{3}{x}\\u'v+u(v'-frac{2}{x}v)=x^2+frac{3}{x}\\1)quad frac{dv}{dx}-frac{2}{x}cdot v=0; ,; frac{dv}{dx}=frac{2v}{x}\\int frac{dv}{v}=int frac{2, dx}{x}\\ln|v|=2ln|x|\\v=x^2\\2)quad u'v=x^2+frac{3}{x}\\frac{du}{dx} cdot x^2=x^2+frac{3}{x}, |:x^2ne 0\\frac{du}{dx}=1+frac{3}{x^3}\\int du=int (1+3cdot x^{-3})dx\\u=x+3cdot frac{x^{-2}}{-2}+C\\u=x-frac{3}{2x^2}+C

3)quad y=x^2cdot (x-frac{3}{2x^2}+C)\\y=x^3-frac{3}{2}+Cx^2
Похожие вопросы
Предмет: Математика, автор: margaritapankulic