Предмет: Математика,
автор: konbvkapkane
Найти максимум функции
y(x)=2x^3/3+x^2/2-15x-24,5
Ответы
Автор ответа:
0
y'(x) =1/3*6x^2+1/2*2x-15=2x^2+x-15; y'(x)=0
2x^2+x-15=0 --> x=2,5; x=-3.
В точке x=-3 производная меняет свой знак с "+" на "-", то есть функция меняет возрастание на убывание, поэтому x=-3 - точка максимума.
Для нахождения МАКСИМУМА подставим получившееся значение в функцию. Получим: -18+4,5+45-24,5=7.
ОТВЕТ: 7.
2x^2+x-15=0 --> x=2,5; x=-3.
В точке x=-3 производная меняет свой знак с "+" на "-", то есть функция меняет возрастание на убывание, поэтому x=-3 - точка максимума.
Для нахождения МАКСИМУМА подставим получившееся значение в функцию. Получим: -18+4,5+45-24,5=7.
ОТВЕТ: 7.
Похожие вопросы
Предмет: География,
автор: BlackDreams
Предмет: Математика,
автор: marii480
Предмет: Литература,
автор: Nasstay
Предмет: Математика,
автор: 88555вика
Предмет: Физика,
автор: damell99