Предмет: Алгебра,
автор: Апжлирщае
Если от двузначного числа отнять произведение его цифр, то получится 25. Найдите это двузначное число, если известно, что оно в 5 раз больше суммы своих цифр.
Ответы
Автор ответа:
0
Пусть (10х + у) - неизвестное двузначное число,
тогда ху - произведение цифр этого числа.
Получаем первое уравнение системы уравнений:
10х + у - ху = 25
Так как неизвестное двузначное число в 5 раз больше суммы своих цифр, получаем второе уравнение системы уравнений:
10х + у = 5(х + у)
Найдем значение х, если y = 5:
10х + 5 - 5х = 25
5х = 25 - 5
5х = 20
х = 20 : 5
х = 4
Получаем двузначное число:
10 * 4 + 5 = 45
Найдем значение у, если х = 5:
10 * 5 + у - 5у = 25
50 - 4у = 25
4у = 50 - 25
4у = 25
у = 25 : 4
у = 6,25 - не удовлетворяет условию, т.к. цифра разряда единиц должна быть натуральным числом (или 0).
Ответ: 45.
тогда ху - произведение цифр этого числа.
Получаем первое уравнение системы уравнений:
10х + у - ху = 25
Так как неизвестное двузначное число в 5 раз больше суммы своих цифр, получаем второе уравнение системы уравнений:
10х + у = 5(х + у)
Найдем значение х, если y = 5:
10х + 5 - 5х = 25
5х = 25 - 5
5х = 20
х = 20 : 5
х = 4
Получаем двузначное число:
10 * 4 + 5 = 45
Найдем значение у, если х = 5:
10 * 5 + у - 5у = 25
50 - 4у = 25
4у = 50 - 25
4у = 25
у = 25 : 4
у = 6,25 - не удовлетворяет условию, т.к. цифра разряда единиц должна быть натуральным числом (или 0).
Ответ: 45.
Похожие вопросы
Предмет: Русский язык,
автор: stvw228
Предмет: Математика,
автор: vera489870
Предмет: Геометрия,
автор: ulamauz9
Предмет: Геометрия,
автор: igorchervinskij
Предмет: Математика,
автор: alino4ka88