Предмет: Геометрия, автор: Шарарашка090

Докажите, что если биссектриса внешнего угла параллельна стороне треугольника, то треугольник равнобедренный

Ответы

Автор ответа: katrenPirs
0
Допустим, внутренний угол треугольника "a"
Внешний угол треугольника = 180-a
Биссектриса делит его пополам, т. е. половинки угла = (180-а) /2
А в самом треугольнике другие 2 угла, кроме a в сумме тоже равны 180-а, т. к. сумма углов в треугольнике = 180
Если биссектриса угла параллельна стороне треугольника, значит, половина внешнего угла = углу при основании. А следовательно, вторая половина = другому углу при основании.
А если углы при основании равны, треугольник равнобедренный!
Похожие вопросы
Предмет: География, автор: Narukkk
Предмет: Алгебра, автор: MariaB31