Предмет: Геометрия,
автор: Аноним
Точка М - середина стороны АС треугольника АВС. На сторонах АВ и ВС (они не равны) во вне треугольника построены квадраты ADFB и СKLB, точки О1 и О2 - их центры.
а) докажите, что О1М=О2М (подсказка: найдите равные треугольники)
б) найдите величину угла О1МО2
Ответы
Автор ответа:
0
а) Пусть S - середина AB, а T - середина BC. Тогда O₁S=AB/2 (т.к. ADFB - квадрат) и MT=AB/2 (т.к. MT - средняя линия треугольника ABC), т.е. O₁S=MT. Аналогично, O₂T=BC/2=MS. Дальше ∠O₁SM=∠O₁SA+∠ASM=90°+∠ABC (т.к. ∠ASM=∠ABC). Аналогично, ∠MTO₂=90°+∠ABC, т.е. ∠O₁SM=∠MTO₂. Значит, треугольники O₁SM и MTO₂ равны по 1-му признаку. Отсюда O₁M=O₂M.
б)∠O₁MO₂=∠O₁MS+∠O₂MT+∠SMT. Но ∠SMT=∠ABC (т.к. SBTM - параллелограмм), ∠TMO₂=∠SO₁M (т.к. треугольники O₁SM и MTO₂ равны), значит, ∠O₁MO₂=∠O₁MS+∠SO₁M+∠ABC=
=180°-∠O₁SM+∠ABC=180°-(90°+∠ABC)+∠ABC=90°.
б)∠O₁MO₂=∠O₁MS+∠O₂MT+∠SMT. Но ∠SMT=∠ABC (т.к. SBTM - параллелограмм), ∠TMO₂=∠SO₁M (т.к. треугольники O₁SM и MTO₂ равны), значит, ∠O₁MO₂=∠O₁MS+∠SO₁M+∠ABC=
=180°-∠O₁SM+∠ABC=180°-(90°+∠ABC)+∠ABC=90°.
Приложения:
Автор ответа:
0
спасибо огромное!
Похожие вопросы
Предмет: Қазақ тiлi,
автор: leilashmidke01
Предмет: Русский язык,
автор: xexeboy30
Предмет: Геометрия,
автор: JekyllHyde
Предмет: Математика,
автор: Leyluka3456