Предмет: Геометрия,
автор: uliannap1
ПОМОГИТЕ ПОЖАЛУЙСТА!!!
Написать уравнение касательной к параболе у=х^2+2х-3 в точке, где она пересекается с прямой у=х-1,известно, что абцисса точки перечения отрицательна.
Ответы
Автор ответа:
0
Находим координаты
точек пересечения параболы и прямой:
х^2+2х-3 = х - 1
х^2+х-2 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=1^2-4*1*(-2)=1-4*(-2)=1-(-4*2)=1-(-8)=1+8=9;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√9-1)/(2*1)=(3-1)/2=2/2=1;
x_2=(-√9-1)/(2*1)=(-3-1)/2=-4/2=-2.
По заданию принимаем отрицательное значение х = -2.
Уравнение касательной:
![y=f(xo)+f'(xo)*(x-xo) y=f(xo)+f'(xo)*(x-xo)](https://tex.z-dn.net/?f=y%3Df%28xo%29%2Bf%27%28xo%29%2A%28x-xo%29)
Для у = х² + 2х - 3 находим:
f(xo) = 4 - 4- 3 = -3
f'(xo), сначала находим f'(x) = 2х + 2, f'(xo) = 2*(-2) + 2 = -2.
Укас = -3 + (-2)(х - (-2)) = -3 - 2х - 4 = -2х - 7.
Ответ: Укас = -2х - 7.
х^2+2х-3 = х - 1
х^2+х-2 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=1^2-4*1*(-2)=1-4*(-2)=1-(-4*2)=1-(-8)=1+8=9;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√9-1)/(2*1)=(3-1)/2=2/2=1;
x_2=(-√9-1)/(2*1)=(-3-1)/2=-4/2=-2.
По заданию принимаем отрицательное значение х = -2.
Уравнение касательной:
Для у = х² + 2х - 3 находим:
f(xo) = 4 - 4- 3 = -3
f'(xo), сначала находим f'(x) = 2х + 2, f'(xo) = 2*(-2) + 2 = -2.
Укас = -3 + (-2)(х - (-2)) = -3 - 2х - 4 = -2х - 7.
Ответ: Укас = -2х - 7.
Похожие вопросы
Предмет: Русский язык,
автор: ramilshamsutdinov634
Предмет: Қазақ тiлi,
автор: bakitzhanimash74
Предмет: Математика,
автор: almat11140gmailcom
Предмет: Алгебра,
автор: ftrdfg