Предмет: Алгебра,
автор: antonsport
Доказать на языке"ε-δ" предел lim(3x-2)=-2, где x стремится к 0
Ответы
Автор ответа:
0
Решение
a) Пусть ε > 0. Требуется поэтому ε найти такое δ > 0, чтобы
из условия 0 < |x − x0| < δ, т.е. из 0 < |x - 0| < δ
вытекало бы неравенство |f(x) − A| < ε, т.е. |3x - 2 − (- 2)| < ε.
Последнее неравенство приводится к виду |3(x )| < ε, т.е. |x | < (1/3)* ε. Отсюда следует, что если взять δ = ε/3 , то неравенство 0 < |x | < δ
будет автоматически влечь за собой неравенство |3x - 2 − (- 2)| < ε.
По определению это и означает, что lim x→ −2 (3x - 2) = −2
a) Пусть ε > 0. Требуется поэтому ε найти такое δ > 0, чтобы
из условия 0 < |x − x0| < δ, т.е. из 0 < |x - 0| < δ
вытекало бы неравенство |f(x) − A| < ε, т.е. |3x - 2 − (- 2)| < ε.
Последнее неравенство приводится к виду |3(x )| < ε, т.е. |x | < (1/3)* ε. Отсюда следует, что если взять δ = ε/3 , то неравенство 0 < |x | < δ
будет автоматически влечь за собой неравенство |3x - 2 − (- 2)| < ε.
По определению это и означает, что lim x→ −2 (3x - 2) = −2
Похожие вопросы
Предмет: Математика,
автор: moloshk0
Предмет: Алгебра,
автор: Аноним
Предмет: Українська мова,
автор: sevelovdana
Предмет: Химия,
автор: HappyApple
Предмет: Математика,
автор: линка24