Предмет: Математика,
автор: Angel5637
Количество диагоналей выпуклого многоугольника больше 2015, какое наименьшее количество вершин может быть у этого многоугольника?С решением. Ответ должен быть или А.63 , или Б. 64 , или В. 65, или Г. 66. Заранее спасибо.
Ответы
Автор ответа:
0
Число диагоналей у выпуклого N угольника равно N(N-3)/2.
Т.о., решаем неравенство:
N(N-3)/2>2015
N(N-3)>4030
N²-3N-4030>0
D² = 3²+4030*4 = 16129 = 127²
N₁ = (3+127)/2 = 130/2 = 65
N₂ = (3-127)/2 < 0 - не может быть числом вершин
Значит, при 65 вершинах число диагоналей равно 65*62/2=65*31=2015. Но по условию диагоналей больше, поэтому число вершин должно быть больше 65. Наименьшее такое число - 66.
Т.о., решаем неравенство:
N(N-3)/2>2015
N(N-3)>4030
N²-3N-4030>0
D² = 3²+4030*4 = 16129 = 127²
N₁ = (3+127)/2 = 130/2 = 65
N₂ = (3-127)/2 < 0 - не может быть числом вершин
Значит, при 65 вершинах число диагоналей равно 65*62/2=65*31=2015. Но по условию диагоналей больше, поэтому число вершин должно быть больше 65. Наименьшее такое число - 66.
Похожие вопросы
Предмет: Русский язык,
автор: turgunova04
Предмет: Математика,
автор: alinatranova42
Предмет: Математика,
автор: karolinazagainova
Предмет: Алгебра,
автор: Kristina4655
Предмет: Биология,
автор: OwlMasha