Предмет: Математика,
автор: nyuratsyupka
Артем, Борис, Ваня и Глеб на перемене ели конфеты. Каждую минуту каждый из них съедал по одной конфете. В начале перемены у Артема и Бориса вместе было столько же конфет, сколько у Вани и Глеба. Могло ли в конце перемены у всех вместе остаться 15 конфет? Объясните свой ответ.
Ответы
Автор ответа:
0
Нет, 15 не четное число,а 4-четное
Автор ответа:
0
Пусть в начале перемены у Артема и Бориса вместе было Х конфет и это столько же конфет, сколько у Вани и Глеба. Значит, у всех четверых вместе было ЧЕТНОЕ количество конфет (по Х у каждой пары), и оно = 2Х.
Каждую минуту 4 мальчика съедали по 1 конфете, поэтому количество конфет уменьшалось на 4 штуки/мин.
За любое время У конфеты уменьшались тоже на ЧЕТНОЕ число (4У).
К концу перемены осталось сколько конфет? От ЧЕТНОГО числа 2Х отнять ЧЕТНОЕ число 4У ...
Это никак не может быть = 15 (НЕЧЕТНОМУ), ведь 2Х-4У=2*(Х-2У) это ЧЕТНОЕ число!
Каждую минуту 4 мальчика съедали по 1 конфете, поэтому количество конфет уменьшалось на 4 штуки/мин.
За любое время У конфеты уменьшались тоже на ЧЕТНОЕ число (4У).
К концу перемены осталось сколько конфет? От ЧЕТНОГО числа 2Х отнять ЧЕТНОЕ число 4У ...
Это никак не может быть = 15 (НЕЧЕТНОМУ), ведь 2Х-4У=2*(Х-2У) это ЧЕТНОЕ число!
Похожие вопросы