Предмет: Физика,
автор: genryxy
задача 189
пожалуйста
Приложения:
Ответы
Автор ответа:
0
Можно решать задачу, что называется, в лоб. То есть, явно написать уравнения движения, а потом искать двухпараметрический экстремум (короче, минимум). Но так придется очень много считать. Поэтому давайте махать руками.
Сначала напишем уравнение огибающей траекторий при разных начальных углах . Этого можно добиться, решив систему уравнений в частных производных
( - параметр), но здесь можно по-другому. Сделаем вот какой трюк:
Рассмотрим закон движения свободно падающей точки как уравнение относительно угла. В таком случае и выступают не в качестве аргумента и функции от аргумента, а в качестве координат некоей мишени, в которую необходимо попасть. Если уравнение (помним, относительно угла) имеет физические решения, то в цель попасть можно.
Вещественные решения на тангенс существуют, когда дискриминант неотрицателен:
Отсюда область поражения:
и ее граница, cоответственно,
.
Требуем, чтобы граница проходила через самую высокую точку сетки:
P.S. Думаю, стоит обратить особое внимание на то, что вершина траектории, которой соответствует минимальная начальная скорость, вовсе не обязательно совпадает с наивысшей точкой сетки. Эта иллюзия оказывается страшно сильна. Настолько сильна, что такое решение можно встретить в нескольких учебниках механики средней школы. Но от нее можно вот как избавиться: пусть так. Будем мысленно уменьшать высоту сетки. При этом точка. куда попадает мяч, продолжит согласно предположению оставаться верхней точкой траектории в том числе, и в пределе , что, очевидно, ломает предположение.
Сначала напишем уравнение огибающей траекторий при разных начальных углах . Этого можно добиться, решив систему уравнений в частных производных
( - параметр), но здесь можно по-другому. Сделаем вот какой трюк:
Рассмотрим закон движения свободно падающей точки как уравнение относительно угла. В таком случае и выступают не в качестве аргумента и функции от аргумента, а в качестве координат некоей мишени, в которую необходимо попасть. Если уравнение (помним, относительно угла) имеет физические решения, то в цель попасть можно.
Вещественные решения на тангенс существуют, когда дискриминант неотрицателен:
Отсюда область поражения:
и ее граница, cоответственно,
.
Требуем, чтобы граница проходила через самую высокую точку сетки:
P.S. Думаю, стоит обратить особое внимание на то, что вершина траектории, которой соответствует минимальная начальная скорость, вовсе не обязательно совпадает с наивысшей точкой сетки. Эта иллюзия оказывается страшно сильна. Настолько сильна, что такое решение можно встретить в нескольких учебниках механики средней школы. Но от нее можно вот как избавиться: пусть так. Будем мысленно уменьшать высоту сетки. При этом точка. куда попадает мяч, продолжит согласно предположению оставаться верхней точкой траектории в том числе, и в пределе , что, очевидно, ломает предположение.
Автор ответа:
0
спасибо
Автор ответа:
0
решал так
составил зависимость координаты от скорости угла и времени и получил 2 уравнения
из системы исключил время
потом выразил квадрат скорости от угла
получил зависимость квадрата скорости от тангенса угла
потом нашел экстремум этой зависимости и подставил значение тангенса.
вычисления во вложении
составил зависимость координаты от скорости угла и времени и получил 2 уравнения
из системы исключил время
потом выразил квадрат скорости от угла
получил зависимость квадрата скорости от тангенса угла
потом нашел экстремум этой зависимости и подставил значение тангенса.
вычисления во вложении
Приложения:
Автор ответа:
0
спасибо
Похожие вопросы
Предмет: Биология,
автор: anonim482
Предмет: Химия,
автор: panabekovae
Предмет: Английский язык,
автор: dujsenbekovazat0
Предмет: Математика,
автор: Аноним