Предмет: Геометрия,
автор: АлинаИксанова
Сторона одного равностороннего треугольника равна 12 дм, а площадь другого равностороннего треугольника равна 16√3 дм². Найдите коэффициент подобия K.
Ответы
Автор ответа:
0
Равносторонние треугольники подобны. Площади подобных треугольников относятся как квадрат коэффициента подобия.
Вариант 1.
Найдем высоту первого треугольника по Пифагору: h=√(a²-(a/2)² или
h=√144-36)=6√3.
Тогда площадь первого треугольника равна S1=(1/2)*a*h или
S1=(1/2)*12*6=36√3.
S1/S2=36√3/16√3=9/4.
k=√(9/4) = 3/2.
Вариант 2.
Сторона второго треугольника равна "а".
Тогда его высота равна по Пифагору: h=√(a²-(a/2)²) = (√3/2)*a, а
площадь равна S2=(1/2)*a*h или 16√3=(1/2)*a(√3/2)*a = (√3/4)*a².
Отсюда a=√64 =8.
Коэффициент подобия равносторонних треугольников равен отношению их сторон, то есть k=12/8=3/2.
Ответ: k=3/2.
Вариант 1.
Найдем высоту первого треугольника по Пифагору: h=√(a²-(a/2)² или
h=√144-36)=6√3.
Тогда площадь первого треугольника равна S1=(1/2)*a*h или
S1=(1/2)*12*6=36√3.
S1/S2=36√3/16√3=9/4.
k=√(9/4) = 3/2.
Вариант 2.
Сторона второго треугольника равна "а".
Тогда его высота равна по Пифагору: h=√(a²-(a/2)²) = (√3/2)*a, а
площадь равна S2=(1/2)*a*h или 16√3=(1/2)*a(√3/2)*a = (√3/4)*a².
Отсюда a=√64 =8.
Коэффициент подобия равносторонних треугольников равен отношению их сторон, то есть k=12/8=3/2.
Ответ: k=3/2.
Похожие вопросы
Предмет: Қазақ тiлi,
автор: leno4ka69
Предмет: Химия,
автор: xboxx05
Предмет: Алгебра,
автор: abbu72
Предмет: Биология,
автор: Latre