Предмет: Алгебра,
автор: MemeSlayer
Дана послідовність 1,1,2,3,7,22,..., кожен член якої дорівнює добутку попередніх двох плюс 1. Доведіть, що жоден член послідовності не ділиться на 4.
Ответы
Автор ответа:
3
Остаток от произведения и суммы чисел всегда можно посчитать, взяв остатки исходных чисел, перемножив их или сложив, и затем от полученного произведения или суммы опять взяв остаток. Здесь получается последовательность остатков от деления на 4:
1,1, 2, 3, 3, 2, 3. Мы получили пару соседних остатков (2, 3), которая уже была раньше. Т.к. каждый следующий элемент однозначно определяется двумя предыдущими, то дальше последовательность остатков будет повторяться, т.е. будет 1,1,(2,3,3),(2,3,3),(2,3,3).., В этой периодической последовательности остатков нет 0, т.к. период состоит только из 2 и 3, значит ни один элемент не делится на 4.
1,1, 2, 3, 3, 2, 3. Мы получили пару соседних остатков (2, 3), которая уже была раньше. Т.к. каждый следующий элемент однозначно определяется двумя предыдущими, то дальше последовательность остатков будет повторяться, т.е. будет 1,1,(2,3,3),(2,3,3),(2,3,3).., В этой периодической последовательности остатков нет 0, т.к. период состоит только из 2 и 3, значит ни один элемент не делится на 4.
Похожие вопросы
Предмет: Қазақ тiлi,
автор: EralyDemeSHEFF007
Предмет: Английский язык,
автор: МозгиДемона
Предмет: Русский язык,
автор: Elya1311
Предмет: Математика,
автор: barbie20006
Предмет: Алгебра,
автор: Vasily23332