Предмет: Геометрия,
автор: kokokoko12
дан ромб ABCD окружность радиуса R описана около треугольника abd и проходит через центр окружости вписанной в треугольник CBD найти площадь ромба
Ответы
Автор ответа:
7
Пусть K - центр вписанной в CBD окружности.
Ясно, что окружность, описанная вокруг CBD симметрична относительно BD к окружности, описанной вокруг ABD. То же касается и центра вписанной в ABD окружности M - он симметричен K относительно BD.
Вся соль задачи в том, что ∠KBD = ∠KAD = (1/2)*∠CBD (BK - биссектриса)
То есть у ромба ABCD острый угол в два раза меньше тупого.
То есть это ромб с углами 60° и 120°.
Поэтому AB = BC = CD = AD = BD = R√3; AC = BD*√3 = 3R;
S = BD*AC/2 = R^2*3√3/2;
Ясно, что окружность, описанная вокруг CBD симметрична относительно BD к окружности, описанной вокруг ABD. То же касается и центра вписанной в ABD окружности M - он симметричен K относительно BD.
Вся соль задачи в том, что ∠KBD = ∠KAD = (1/2)*∠CBD (BK - биссектриса)
То есть у ромба ABCD острый угол в два раза меньше тупого.
То есть это ромб с углами 60° и 120°.
Поэтому AB = BC = CD = AD = BD = R√3; AC = BD*√3 = 3R;
S = BD*AC/2 = R^2*3√3/2;
Похожие вопросы
Предмет: Другие предметы,
автор: Elkhan0707
Предмет: Английский язык,
автор: uskov802
Предмет: Русский язык,
автор: Лена2к04
Предмет: Информатика,
автор: olgaolenka7272
Предмет: Математика,
автор: Громова203