Предмет: Математика, автор: Kiiiiiiisa

решить неравенство log1/2*(x^2-4x+3)<или =-3

Ответы

Автор ответа: nafanya2014
2
log_{ \frac{1}{2} }(x^2-4x+3) \leq -3 \\  \\ log_{ \frac{1}{2} }(x^2-4x+3) \leq -3 \dot log_{ \frac{1}{2} } \frac{1}{2}

 log_{ \frac{1}{2} }(x^2-4x+3) \leq  log_{ \frac{1}{2} }( \frac{1}{2}) ^{-3}  \\  \\ log_{ \frac{1}{2} }(x^2-4x+3) \leq  log_{ \frac{1}{2} }8

Под знаком логарифмической функции должно быть положительное выражение, получаем первое неравенство системы.
Логарифмическая функция с основанием 0< 1/2 < 1 убывающая. Большему значению функции соответствует меньшее значение аргумента. Получим второе неравенство системы
 \left \{ {{ x^{2} -4x+3\ \textgreater \ 0} \atop { x^{2} -4x+3 \geq 8}} \right.

Решения второго неравенства и будут решением задачи.

х²-4х+3≥8

х²-4х-5≥0

D=16+20=36

x₁=(4-6)/2=-1     x₂=(4+6)/2=5

\\\\\\\\\\\\\\\\\\\               ////////////////////////////
----------------[-1]-------------[5]-------------

Ответ (-∞;-1]U[5;+∞)
Похожие вопросы