Предмет: Геометрия,
автор: julia14789
В прямом параллелепипеде АВСДА1В1С1Д1 ОСНОВАНИЕМ СЛУЖИТ КВАДРАТ. Найдите объем параллелепипеда если площадь сечения, проходящего через диагонали основания АС и вершину В1, равна S и это сечение наклонено к плоскости основания под углом 60 градусов.
Ответы
Автор ответа:
0
Sabc=S*cos60 = S/2
Sabcd = S/2+S/2 = S
тогда AB=BC = sqrt(S)
B1C = 2*BC, так как BC - катет лежащий против угла в 30 градусов а B1C - гипотенуза
B1B=sqrt(3*S)
V=S*sqrt(3*S)
Похожие вопросы
Предмет: История,
автор: play007dima
Предмет: Математика,
автор: insjzh
Предмет: Английский язык,
автор: kovalevvitaly2005
Предмет: Алгебра,
автор: Фaтя