Предмет: Геометрия,
автор: vladislaev
Докажите, что медиана треугольника меньше полусуммы сторон, которые выходят с ней из одной вершины, и больше полуразности суммы этих сторон и третьей стороны треугольника
Ответы
Автор ответа:
0
пусть две стороны треугольника равны a и b, а медиана проведена к третьей стороне, которая равна с. Длина медианы пусть равна m. Тогда если продолжить медиану на ее длину, и достроить до параллелограмма, то верно неравенство треугольника:
a+b>2m. Отсюда первое условие.
Для второго, исходный треугольник разбит медианой на 2 треугольника. Для каждого из них неравенство треугольника можно записать так:
m+c/2>a
m+c/2>b
Складывая эти неравенства и перенося с, получим 2m>a+b-c, что и требовалось.
a+b>2m. Отсюда первое условие.
Для второго, исходный треугольник разбит медианой на 2 треугольника. Для каждого из них неравенство треугольника можно записать так:
m+c/2>a
m+c/2>b
Складывая эти неравенства и перенося с, получим 2m>a+b-c, что и требовалось.
Автор ответа:
0
Спасибо. Сейчас попробую разобраться.
Похожие вопросы
Предмет: Алгебра,
автор: sashaostrynska12
Предмет: Русский язык,
автор: shulyakovskyvova
Предмет: Алгебра,
автор: Prijmuk
Предмет: Физика,
автор: Аноним
Предмет: География,
автор: Аноним