Предмет: Геометрия,
автор: Kristina19991
Биссектрисы углов А и D параллелограмма ABCD пересекаются в точке, лежащей на стороне ВС. Найдите АВ, если ВС=40.
Ответы
Автор ответа:
0
Давай с чертежом разберёмся. Есть параллелограмм АВСД. Провели биссектрису СК (сразу отметь равные углы при точке А. Угол ВАК = углу КАД).Сразу надо увидеть накрест лежащие углы (угол КАД = углуВКА) углы равны ⇒ ΔАВК - равнобедренный . Пометь стороны АВ = ВК
Тепрь то же самое с другой биссектрисой ДК. Она угол Д делит пополам, ест накрест лежащие углы КДА и СКД. ΔКСД -равнобедренный СД = КС
Но ведь АВ = СД, значит АВ = СД = ВК = КС. Т.е. точка К - середина АВ. Если ВС = 40, то АВ =20
Тепрь то же самое с другой биссектрисой ДК. Она угол Д делит пополам, ест накрест лежащие углы КДА и СКД. ΔКСД -равнобедренный СД = КС
Но ведь АВ = СД, значит АВ = СД = ВК = КС. Т.е. точка К - середина АВ. Если ВС = 40, то АВ =20
Похожие вопросы
Предмет: Математика,
автор: snnsndnnssnndn
Предмет: Английский язык,
автор: danilluabobady
Предмет: Физика,
автор: k6polina
Предмет: История,
автор: aisluakhetova
Предмет: Алгебра,
автор: СаюшкаК