Предмет: Алгебра,
автор: Pandaren
Решите тригонометрическое неравенство
cos(x/3+pi/3)<=cos5pi/3
Ответы
Автор ответа:
0
cos(x/3 + π/3) ≤ cos(5π/3)
cos(x/3 + π/3) ≤ 1/2
arccos(1/2) + 2πn ≤ (x/3 + π/3) ≤ 2π - arccos(1/2) + 2πn, n∈Z
π/3+ 2πn ≤ (x/3 + π/3) ≤ 2π - π/3 + 2πn, n∈Z
π/3+ 2πn ≤ (x/3 + π/3) ≤ 5π/3 + 2πn, n∈Z
π/3 - π/3 + 2πn ≤ (x/3) ≤ 5π/3 - π/3 + 2πn, n∈Z
2πn ≤ (x/3) ≤ 4π/3 + 2πn, n∈Z
6πn ≤ x ≤ 4π + 6πn, n∈Z
cos(x/3 + π/3) ≤ 1/2
arccos(1/2) + 2πn ≤ (x/3 + π/3) ≤ 2π - arccos(1/2) + 2πn, n∈Z
π/3+ 2πn ≤ (x/3 + π/3) ≤ 2π - π/3 + 2πn, n∈Z
π/3+ 2πn ≤ (x/3 + π/3) ≤ 5π/3 + 2πn, n∈Z
π/3 - π/3 + 2πn ≤ (x/3) ≤ 5π/3 - π/3 + 2πn, n∈Z
2πn ≤ (x/3) ≤ 4π/3 + 2πn, n∈Z
6πn ≤ x ≤ 4π + 6πn, n∈Z
Автор ответа:
0
Spasibo")
Похожие вопросы
Предмет: Математика,
автор: aminakulikenova
Предмет: Алгебра,
автор: Samosval777
Предмет: Экономика,
автор: TesterSam
Предмет: Алгебра,
автор: kbichkov
Предмет: Алгебра,
автор: alnpopok