Предмет: Алгебра,
автор: Юльце
сумма второго и восьмого членов бесконечно убывающей геометрической прогрессии равна.325/128, а сумма второго и шестого членов, уменьшенная на 65/32, равна четвертому члену этой же прогрессии.
Ответы
Автор ответа:
0
Условие. сумма второго и восьмого членов бесконечно убывающей геометрической прогрессии равна.325/128, а сумма второго и шестого членов, уменьшенная на 65/32, равна четвертому члену этой же прогрессии. Найти первый член прогрессии и знаменатель.
Решение:
Сумма второго и восьмого членов:
Сумма второго и шестого членов, уменьшенная на 65/32, равна четвертому члену этой прогрессии:
Из равенства заметим, что второй множитель можно разложить на множители по формуле суммы кубов
Подставляем данные, получим
Ответ: 5; 0.5 и -5; -0.5.
Похожие вопросы
Предмет: Биология,
автор: ievlevandrey6
Предмет: Математика,
автор: Аноним
Предмет: Химия,
автор: Murat84730371838
Предмет: Геометрия,
автор: Sergeo20