Предмет: Алгебра,
автор: homa9682
Уважаемые математики!Помогите, пожалуйста, с задачей:
Можно ли найти такие числа p и q, что выражение x^2+px+q при любом целом x принимает целое значение, делящееся на 3?
Задача нестандартная. Я думаю, что нет. Но как ее решить?Вместо x взять 2n и 2n+1 и подставлять и решать систему?
Спасибо большое)
Ответы
Автор ответа:
0
Пусть такое возможно и такие p и q существуют.
тогда при x=+-1
Выражение целое и делится на 3.
То P(1)= 1+p+q делится на 3
и P(-1)=1-p+q делится на 3.
Поскольку условие должно быть выполнено для всех x.
Не будем забывать что нуль тоже целое число.
В нуле многочлен равен q. То есть q кратно 3. P(0)=q -целое и делится на 3
Cложем почленно: P(1)+P(-1)=2+2q . Поскольку оба выражения P(1) и P(-1) кратны 3 ,то их сумма тоже кратна 3.
То 2+2q кратно 3. 2*q кратно 3 ,тк q-кратно 3.
Но 2 не кратно 3. А по признаку не делимости: если одно число делится на второе,а второе нет. То все выражение не делится на это число. То есть 2+2q не кратно 3. То есть мы пришли к противоречию таких чисел p и q нет. Вообще можно доказать что можно найти p и q для постоянной делимости при любом x, только на 2 этим же способом. А для натуральных чисел выше двух таких p и q отыскать нельзя и вы уже поняли почему . А вот для делимости на 2 такой многочлен действительно есть. x*(x+1)=x^2+x А вот для делимости на 3 нужен как минимум многочлен 3 степени: ну например x*(x+1)*(x+2) . Но это я так к слову.
тогда при x=+-1
Выражение целое и делится на 3.
То P(1)= 1+p+q делится на 3
и P(-1)=1-p+q делится на 3.
Поскольку условие должно быть выполнено для всех x.
Не будем забывать что нуль тоже целое число.
В нуле многочлен равен q. То есть q кратно 3. P(0)=q -целое и делится на 3
Cложем почленно: P(1)+P(-1)=2+2q . Поскольку оба выражения P(1) и P(-1) кратны 3 ,то их сумма тоже кратна 3.
То 2+2q кратно 3. 2*q кратно 3 ,тк q-кратно 3.
Но 2 не кратно 3. А по признаку не делимости: если одно число делится на второе,а второе нет. То все выражение не делится на это число. То есть 2+2q не кратно 3. То есть мы пришли к противоречию таких чисел p и q нет. Вообще можно доказать что можно найти p и q для постоянной делимости при любом x, только на 2 этим же способом. А для натуральных чисел выше двух таких p и q отыскать нельзя и вы уже поняли почему . А вот для делимости на 2 такой многочлен действительно есть. x*(x+1)=x^2+x А вот для делимости на 3 нужен как минимум многочлен 3 степени: ну например x*(x+1)*(x+2) . Но это я так к слову.
Автор ответа:
0
Оказывается, такие простые задачи и решения. Но ведь до них додуматься надо)Суть математики)Гениально!
Автор ответа:
0
Тут дело не в знаниях а в спокойствии и отхождения от основных принципов решение.
Автор ответа:
0
Возможно)
Автор ответа:
0
решения. И спасибо конечно за комплимент ,но до гения мне далеко. Задачи то не сложные.
Автор ответа:
0
Недалеко)вы уже на пике)
Похожие вопросы
Предмет: Кыргыз тили,
автор: raatesenaliev
Предмет: Информатика,
автор: Аноним
Предмет: Физика,
автор: ivankochnev07
Предмет: Геометрия,
автор: Аноним