Предмет: Геометрия,
автор: ольга212
в треугольнике авс биссектриса угла а делит высоту, проведенную из вершины в в отношении 13:12, считая от точки в. найдите радиус окружности, описанной около треугольника авс, если вс=10
Ответы
Автор ответа:
0
Рассмотрим треугольник АВД, где ВД - высота из вершины В.
По свойству биссектрисы стороны АВ и АД относятся как 13:12, так как сторона ВД разделена биссектрисой в этом соотношении.
Тогда косинус угла А равен 12/13, а синус равен √(1-(12/13)²) =
= √(1-144/169) = √(25/169) = 5/13.
Радиус окружности, описанной около треугольника авс равен a/(2sin α) = 10/(2*(5/13) = 13 см.
По свойству биссектрисы стороны АВ и АД относятся как 13:12, так как сторона ВД разделена биссектрисой в этом соотношении.
Тогда косинус угла А равен 12/13, а синус равен √(1-(12/13)²) =
= √(1-144/169) = √(25/169) = 5/13.
Радиус окружности, описанной около треугольника авс равен a/(2sin α) = 10/(2*(5/13) = 13 см.
Похожие вопросы
Предмет: Другие предметы,
автор: aiymomarova
Предмет: Английский язык,
автор: abdina61
Предмет: Математика,
автор: ilzinaabdullina
Предмет: География,
автор: nikitkalevchen
Предмет: История,
автор: antonovaoksan2