Предмет: Геометрия,
автор: glor12i
Через вершину А правильного треугольника АВС проведена прямая
АМ, перпендикулярная к его плоскости. Найдите расстояние от
точки М до стороны ВС, если АВ=4 см, АМ=2 см.
Ответы
Автор ответа:
0
Пусть Н - середина ВС.
Тогда АН медиана и высота правильного ΔАВС,
АН⊥ВС.
АН - проекция МН на плоскость АВС, ⇒
МН⊥ВС по теореме о трех перпендикулярах.
МН - искомое расстояние.
АН = АВ√3/2 = 4√3.2 = 2√3 см как высота равностороннего треугольника.
Из ΔМАН по теореме Пифагора
МН = √(МА² + АН²) = √(4 + 12) = √16 = 4 см
Тогда АН медиана и высота правильного ΔАВС,
АН⊥ВС.
АН - проекция МН на плоскость АВС, ⇒
МН⊥ВС по теореме о трех перпендикулярах.
МН - искомое расстояние.
АН = АВ√3/2 = 4√3.2 = 2√3 см как высота равностороннего треугольника.
Из ΔМАН по теореме Пифагора
МН = √(МА² + АН²) = √(4 + 12) = √16 = 4 см
Приложения:
Похожие вопросы
Предмет: Геометрия,
автор: aizhanzhumash077
Предмет: Русский язык,
автор: milanapavlova2008
Предмет: Геометрия,
автор: kirtis3271
Предмет: Математика,
автор: Diman03
Предмет: Математика,
автор: redball