Предмет: Геометрия, автор: Настей

в равнобедренном треугольнике ABC точка K и M являются серединой боковых сторон AB и BC соотведственно BD- медиана треугольника. Докажите, что BKD=BMD.

Ответы

Автор ответа: evo
0

ВД-медиана, биссектриса и высота. В тр-ках ВКД и ВМД ВД -общая, МВ=ВК и угол МВД= углу ДВК. Напротив равных углов равные стороны. Треугольник ВКД=ВМД

Автор ответа: fse13
0

Дано тр. ABC

К, M - середины AB и ВС

AB=BC

BD - медиана

Док-ть:

тр. BKD = тр. BMD

Док-во:

так как K и M по условию середины сторон AB и ВС, то KM - средняя линия тр. ABC

AB=BC (по условию тр. равнобедренный), след-но BK=BM и угол BKM = углу BMK (углы при основании равнобедренного тр.)

BD - медиана (из определения - отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны), след-но KD=DM

 

Значит по первому признаку равенства треугольников: Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

эти треугольники равны (BK=BM, KD=DM, угол BKM = углу BMK)

 

Похожие вопросы
Предмет: История, автор: mdeaaa