в равнобедренном треугольнике ABC точка K и M являются серединой боковых сторон AB и BC соотведственно BD- медиана треугольника. Докажите, что BKD=BMD.
Ответы
ВД-медиана, биссектриса и высота. В тр-ках ВКД и ВМД ВД -общая, МВ=ВК и угол МВД= углу ДВК. Напротив равных углов равные стороны. Треугольник ВКД=ВМД
Дано тр. ABC
К, M - середины AB и ВС
AB=BC
BD - медиана
Док-ть:
тр. BKD = тр. BMD
Док-во:
так как K и M по условию середины сторон AB и ВС, то KM - средняя линия тр. ABC
AB=BC (по условию тр. равнобедренный), след-но BK=BM и угол BKM = углу BMK (углы при основании равнобедренного тр.)
BD - медиана (из определения - отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны), след-но KD=DM
Значит по первому признаку равенства треугольников: Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
эти треугольники равны (BK=BM, KD=DM, угол BKM = углу BMK)