Предмет: Алгебра,
автор: dimon777pingvin
Найдите наибольшее трёхзначное натуральное число которое при делении на 5 и на 11 даёт равные ненулевые остатки
Ответы
Автор ответа:
0
При делении на 5 и 11 равные остатки могут быть: 1; 2; 3 и 4
На первом этапе нужно найти наибольшее трехзначное число на конце с нулем или с 5 и делящееся на 11.
Число делящееся на 11 можно выразить формулой 11m
Решим неравенство 11m<1000⇒m<1000/11⇒m<90+10/11
Значит, наибольшее натуральное трехзначное число, которое делится на 11 равно 11*90=990. Оно делится и на 5. Прибавим наибольший остаток, получим наибольшее число.
Ответ: 990+4=994 -
994=90*11+4; 994=198*5+4
На первом этапе нужно найти наибольшее трехзначное число на конце с нулем или с 5 и делящееся на 11.
Число делящееся на 11 можно выразить формулой 11m
Решим неравенство 11m<1000⇒m<1000/11⇒m<90+10/11
Значит, наибольшее натуральное трехзначное число, которое делится на 11 равно 11*90=990. Оно делится и на 5. Прибавим наибольший остаток, получим наибольшее число.
Ответ: 990+4=994 -
994=90*11+4; 994=198*5+4
Похожие вопросы
Предмет: Химия,
автор: aayyaazz
Предмет: Математика,
автор: Alexalina12
Предмет: Английский язык,
автор: nahmadillaevadamira
Предмет: Математика,
автор: Аноним