|x-2|+|x-4|>_2 нули подмодульного выражения как найти
Ответы
|x-2|+|x-4|>_2
нули подмодульного выражения - это такие значения переменной х, при которых значение модуля равно нулю.
в нашем случае необходимо найти нули подмодульных выражений
|х-2| и |х-4|
х=2 х=4
х=2 х=4
--------------------------|----------------------------------|-------------------------------> х
|х-2|= -х+2 |х-2|= х-2 |х-2|= х-2
|х-4|= -х+4 |х-4|= -х+4 |х-4|= х-4
Значит, решаем, раскрывая модули для каждого их указанных интервалов.
|x-2|+|x-4|>_2 при х<2:
2-х+4-х>2
6-2х>2
х<2; с учетом исследуемого интервала:
х<2
|x-2|+|x-4|>_2 при 2<=х<4х-2-х+4>2
2>2 - решений на интервале нет
|x-2|+|x-4|>_2 при х>=2
x-2+x-4>2
2х>8
х>4. С учетом интервала
х>4
ответ: (-бскнчнсть;2) ; (4; +бскнчнсть)