Предмет: Геометрия,
автор: mari13
2. На стороне АС треугольника ABC с площадью 36 см2 взята точка D, AD : DC =1:5. Найдите площадь треугольника ABD.
Ответы
Автор ответа:
0
Площадь треугольника равна половине произведения высоты на сторону, к которой проведена.
S=a•h:2
• Если высоты двух треугольников равны, то их площади относятся как основания.
Высота ∆ ADC и ∆ ABC общая.
Подробно.
S(ABD):S(ABC)=AD:AC
Точка D по условию делит АС в отношении 1:5.
Примем AD=a, тогда DC=5a.
AC=а+5а=6a
S(ABD):A(ABC)=1/6
S(ABC)=36
S(ABD)=36:6=6 см²
-----------
Площадь треугольника можно найти и по формуле
S=a•b•sinα:2, где a и b стороны треугольника, α - угол между ними.
Угол А общий для ∆ABD и ∆ABC, поэтому
S (ABD):S (ABC)=AB•AD:AB•AC, т.е. получается то же отношение AD:AC, равное для данного треугольника 1/6.
Приложения:
Похожие вопросы
Предмет: Физика,
автор: mandra9012003
Предмет: Русский язык,
автор: Mubishux2009
Предмет: Русский язык,
автор: Nastya4094
Предмет: Математика,
автор: lelik69