Предмет: Алгебра,
автор: 140020
Постройте график уравнения.
1)y=|x^2-3|;
2)y=|x^2-x-2|;
3)y=6/|x|.
Ответы
Автор ответа:
0
Графики будут в файлах, а КАК построить, я расскажу.
Принцип построения первого и второго графика схож. Здесь под модулем всё выражение, а значит, ТА ЧАСТЬ ГРАФИКА, которая находится НИЖЕ оси ОХ, симметрично отображается по этой оси. Сначала построим обычные графики.
1), - квадратичная функция, график - парабола, получается путём параллельного переноса по оси ОУ вниз на 3 ед. Вершина (0;-3), ветви направлены вверх, так как a>0.
2) - квадратичная функция, график - парабола, ветви направлены вверх(a>0), найдём координаты вершины: (0,5;-2,25), можем ещё найти точки пересечения с осями при х=0 y=-2, y=0, тогда решим квадратное уравнение
3) - функция обратной пропорциональности, график - гипербола. Здесь с модулем чуть по-другому. Хотя, можно, конечно, сказать, что II, тогда преобразования те же самые, но здесь ещё возможен такой вариант: под модулем находится только аргумент, поэтому та часть графика, которая находится левее оси ОУ, удаляется, а что правее - симметрично отображается по оси OY. Всё, что на координатных плоскостях отображается красным - подлежит удалению, эта часть симметрично отображается. Чёрным на графике обозначен конечный график со всеми преобразованиями.
Принцип построения первого и второго графика схож. Здесь под модулем всё выражение, а значит, ТА ЧАСТЬ ГРАФИКА, которая находится НИЖЕ оси ОХ, симметрично отображается по этой оси. Сначала построим обычные графики.
1), - квадратичная функция, график - парабола, получается путём параллельного переноса по оси ОУ вниз на 3 ед. Вершина (0;-3), ветви направлены вверх, так как a>0.
2) - квадратичная функция, график - парабола, ветви направлены вверх(a>0), найдём координаты вершины: (0,5;-2,25), можем ещё найти точки пересечения с осями при х=0 y=-2, y=0, тогда решим квадратное уравнение
3) - функция обратной пропорциональности, график - гипербола. Здесь с модулем чуть по-другому. Хотя, можно, конечно, сказать, что II, тогда преобразования те же самые, но здесь ещё возможен такой вариант: под модулем находится только аргумент, поэтому та часть графика, которая находится левее оси ОУ, удаляется, а что правее - симметрично отображается по оси OY. Всё, что на координатных плоскостях отображается красным - подлежит удалению, эта часть симметрично отображается. Чёрным на графике обозначен конечный график со всеми преобразованиями.
Приложения:
Похожие вопросы
Предмет: Математика,
автор: egyptsheniyazov2018
Предмет: Математика,
автор: hdhdhdhd46nene
Предмет: Английский язык,
автор: Gwarneri
Предмет: Биология,
автор: amma03
Предмет: Химия,
автор: nastychernova1Nas