Предмет: Геометрия,
автор: царь3
Дан параллелограмм ABCD. Биссектрисы углов A и D пересекают сторону BC в двух точках, расстояние между которыми равно 2. Найти сторону BC, если AB=5.
Ответы
Автор ответа:
0
угол1=углу2 как внутренние накрест лежащие углы при параллельных прямых ВС и АД и секущей КД. угол1=углу2 т.к КД биссектриса, т.е угол 3=углу2 значит треугольник КДС равнобедренный и СД=КС=5
угол 4=углу 5 как внутренние накрест лежащие углы при параллельных прямых ВС и АД и секущей AL. угол4=углу6 т.к AL - биссектриса. Значит угол4=углу5 т.е треугольник ABL равнобедренный AB=BL=5
Получается BC=BK+LC+KL, BL+KC=BK+KL+KL+LC. BK+LC=10-2=8
Ответ:8
Похожие вопросы
Предмет: Русский язык,
автор: aizadamadina90
Предмет: Алгебра,
автор: jurbasic
Предмет: Химия,
автор: prostogirl0003
Предмет: Биология,
автор: nutsss