Предмет: Алгебра,
автор: hncgsv
ПОМОГИТЕ ПОЖ!!! Составьте уравнение касательной к графику функции y=2x+5-e^x+3 в точке с абсциссой, равной -3
Ответы
Автор ответа:
0
Запишем уравнения касательной в общем виде:
yk = y0 + y'(x0)(x - x0)
По условию задачи x0 = -3, тогда y0 = -3+5/e^3
Теперь найдем производную:
y' = (2x+5e^x+3)' = 2+5e^x
следовательно:
f'(-3) = 2+5^ (-3) = 2+5/e^3
В результате имеем:
y = y0 + y'(x0)(x - x0)
y = -3+5/e^3 + 2+5/e^3(x +3)
или
x = -3
yk = y0 + y'(x0)(x - x0)
По условию задачи x0 = -3, тогда y0 = -3+5/e^3
Теперь найдем производную:
y' = (2x+5e^x+3)' = 2+5e^x
следовательно:
f'(-3) = 2+5^ (-3) = 2+5/e^3
В результате имеем:
y = y0 + y'(x0)(x - x0)
y = -3+5/e^3 + 2+5/e^3(x +3)
или
x = -3
Автор ответа:
0
Напишем уравнения касательной в общем виде:
yk = y0 + y'(x0)(x - x0)
По условию задачи x0 = -3, тогда y0 = -3+5/e^3
Теперь найдем производную:
y' = (2x+^x+3)' = 2+5e^x
следовательно:
f'(-3) = 2+5^ (-3) = 2+5/e^3
В результате имеем:
y = y0 + y'(x0)(x - x0)
y = -3+5/e^3 + 2+5/e^3(x +3)
или
x = -3
yk = y0 + y'(x0)(x - x0)
По условию задачи x0 = -3, тогда y0 = -3+5/e^3
Теперь найдем производную:
y' = (2x+^x+3)' = 2+5e^x
следовательно:
f'(-3) = 2+5^ (-3) = 2+5/e^3
В результате имеем:
y = y0 + y'(x0)(x - x0)
y = -3+5/e^3 + 2+5/e^3(x +3)
или
x = -3
Похожие вопросы
Предмет: Психология,
автор: soyguyoly
Предмет: Алгебра,
автор: vegass58
Предмет: Английский язык,
автор: valensia55
Предмет: Алгебра,
автор: gursss
Предмет: Литература,
автор: andrienkohelena