Предмет: Геометрия,
автор: marinka31
Доказать,что диагонали куба пересекаются в одной точке и делятся точкой пересечения пополам.
Ответы
Автор ответа:
0
Рассмотрим какие-нибудь две диагонали куба, например А1А3' и А4А'2. Так как четырехугольники А1А2А3А4 и А2А'2А'3А3 — квадраты с общей стороной А2А3, то их стороны А1А4 и A'2A'3 параллельны друг другу, а значит, лежат в одной плоскости. Эта плоскость пересекает плоскости противолежащих граней куба по параллельным прямым А1А'2 и А 4А' 3. Следовательно, четырехугольник А4А 1A'2A'3 — параллелограмм. Диагонали куба А1А3' и А4А'2 являются диагоналями этого параллелограмма. Поэтому они пересекаются и точкой пересечения О делятся пополам.Аналогично доказывается, что диагонали А1А3' и А2А4' , а также диагонали А1А3' и А3А1' пересекаются и точкой пересечения делятся пополам. Отсюда заключаем, что все четыре диагонали куба пересекаются в одной точке и точкой пересечения делятся пополам. Доказано.
Приложения:
Похожие вопросы
Предмет: География,
автор: parandiynazar
Предмет: Литература,
автор: amankulovakunduz0
Предмет: История,
автор: arommrus
Предмет: История,
автор: rovioangrybirds