Предмет: Геометрия,
автор: jack51
В параллелограмме ABCD проведена биссектриса угла A, которая пересекает прямую BC в точке K. Найдите периметр параллелограмма, если BK = 5 см, KC = 2 см.
Ответы
Автор ответа:
0
Найдем сторону ВС
ВС = ВК + КС = 5+2 = 7см
Так как АВСД пара-м , то ВС = АД = 7см
угол ВАК = углу КАД т.к. АК бис-са
угол КАД = углу ВКА как накрест лежащие углу при ВС параллельно АД => что треуг-к АВК равнобедренный.=> ВК=АВ =5см.
Т.к. АВСД пара-м , то ВА = СД = 5 см.
P авсд = АВ + ВС + СД + ДА = 5+7+5+7= 24 см
Как-то так. Удачи!
Автор ответа:
0
1)по свойству параллелограмма AD параллельна BC следовательно,что угол DAK=углу
BKA следовательно углы BKA и BAK равны,следовательно треугольник ABK-равнобудренный и из этого следует,что стороны AB=BK=5см
2)BC=BK+KC=5+2=7см
3)Pabcd=(BC+AB)*2=(7+5)*2=24см
ответ:P=24см
Похожие вопросы
Предмет: Математика,
автор: milana803188
Предмет: Английский язык,
автор: AZIKHVH
Предмет: Русский язык,
автор: dudukinaviktoria57
Предмет: История,
автор: 22olga355
Предмет: Алгебра,
автор: vladislavich