Предмет: Геометрия,
автор: atatata1391
Диагональ прямоугольного параллелепипеда равно корень из 111. Найдите площадь поверхности этого параллелепипеда, если его рёбра относятся, как 3:4:7
Ответы
Автор ответа:
0
Пусть меньшее ребро прямоугольного параллелепипеда равно 3х, тогда другие ребра равны 4х и 7х. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов диагоналей его линейных измерений, т.е.
(3x)^2+(4x)^2+(7x)^2=(корень(111))^2
9x^2+16x^2+49x^2=111;
74x^2=111;
x^2=111/74=1.5
Далее Площадь поверхности прямоугольного параллелепипеда равна
S=2((3x)(4x)+(4x)(7x)+(3x)(7x))=2*(3*4*x^2+4*7x^2+3*7x^2)=2x^2*(12+28+21)=2*1.5*61=183
Похожие вопросы
Предмет: Математика,
автор: mashamustafayeva04
Предмет: Геометрия,
автор: aleksandpopov
Предмет: Алгебра,
автор: viktoriakomarova567
Предмет: Геометрия,
автор: Нинка31