Предмет: Алгебра, автор: Женечка01

1).Докажите, что сумма четырех различных двузначных чилес, записанных с помощью двух заданных цифр не может быть квадратом натурального числа.



2). Решите уравнение х^2+5y^2+4xy+2y+1=0

Ответы

Автор ответа: dtnth
0

Первая. Пусть а и b - две разные ненулевые данные цифры (двузначные числа не могут начинаться с 0). Тогда числа образованные с их пощью 10а+в (двузначное число в котором цифра а - количевство десятков, b - количевство единиц), 10a+a, 10b+a, 10b+b. Их сумма

10a+b+10a+a+10b+a+10b+b=22a+22b=22(a+b)=2*11 (a+b)

так как числа 2 и 11 взаимно простые, а сумма должна быть квадратом, то второй ненулевой множитель a+b должен делится на 22, что невозможно так как a и b - цифры, то их сумма не превышает 9+9=18

Таким образом сумма четырех различных двузначных чилес, записанных с помощью двух заданных цифр не может быть квадратом натурального числа. Доказано

 

 

 

Вторая. х^2+5y^2+4xy+2y+1=0

x^2+4xy+4y^2+y^2+2y+1=0

(x+2y)^2+(y+1)^2=0

так как квадрат любого выражения неотрицателен, сумма двух неотрицательных неотрицательное и равно 0, только если каждое из слагаемых равно 0, то

 

x+2y=0

y+1=0

 

y=-1

x=-2y=-2*(-1)=2

ответ: (2;-1)

Похожие вопросы