Предмет: Алгебра, автор: Olio95

Изобразите схематически график функции y=0,5^x
и опишите по графику её свойства

Ответы

Автор ответа: dnepr1
0
Показательную функцию у = 0,5^x можно представить в виде у =(1/2)^x =- 1/(2^x) = 2^(-x).
Для её построения надо задаться значениями х и получить значения у:
x    -2     -1    0       1          2
y     4      2     1    0,5      0,25
Область определения функции. ОДЗ  -00<x<+00.
Область значений (0; +00).
Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0 в (1/2)^x. 
Результат: y=1. Точка: (0, 1)
Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:(1/2)^x = 0. Решаем это уравнение  и его корни будут точками пересечения с X:
Нету корней, значит график функции не пересекает ось X
Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=-2^(-x)*log(2)=0
Решаем это уравнение и его корни будут экстремумами:- нет решения, значит, нет экстремумов.
Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции, 
+ нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=2^(-x)*log(2)^2=0
Решаем это уравнение и его корни будут точками, где у графика перегибы: Не удалось получить решение уравнения. - значит, нет перегибов.
Вертикальные асимптотыНету
Горизонтальные асимптоты графика функции:Горизонтальную асимптоту найдем с помощью предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim (1/2)^x, x->+oo = 0, значит уравнение горизонтальной асимптоты справа: y=0lim (1/2)^x, x->-oo = oo, значит горизонтальной асимптоты слева не существуетНаклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы :lim (1/2)^x/x, x->+oo = 0, значит совпадает с горизонтальной асимптотой слеваlim (1/2)^x/x, x->-oo = -oo, значит наклонной асимптоты слева не существуетЧетность и нечетность функции:Проверим функци четна или нечетна с помощью соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:(1/2)^x = (1/2)^(-x) - Нет(1/2)^x = -((1/2)^(-x)) - Нетзначит, функция не является ни четной ни нечетной
Похожие вопросы
Предмет: Алгебра, автор: dianapelmeshka21