Предмет: Геометрия, автор: Pavvi

1. Діагональ бічної грані правильної трикутної призми дорівнює d і утворює з площиною основи кут Альфа. Знайдіть площу бічної поверхні призми.
2. Знайдіть площу поверхні чотирикутної піраміди, у якої кожне ребро дорівнює √2 см, а в основі лежить квадрат.
3. Бічні ребра піраміди дорівнюють гіпотенузі прямокутного трикутника, що лежить в її основі, дорівнюють 12 см. Знайдіть висоту піраміди.

Ответы

Автор ответа: dnepr1
0
1) Бічна грань - прямокутник.
ЇЇ розміри -dsin α*dcos α = d²sin2α/2.
Площа бічної поверхні призми складає з 3 граней, тоді Sбок = (d²sin2α/2)*3 = 3d²sin2α/2.
2) Якщо 
кожне ребро дорівнює √2 см, то бічні грані - рівносторонні трикутники. Апофема дорівнює √2*cos 30 = √2*√3/2.
Площа бічної поверхні становить 4*(1/2)*√2*√2*√3/2. = 2√3,
Площа основи - (√2)² = 2.
Тоді повна поверхня дорівнює 2√3 + 2 = 2(√3 + 1).
3) Якщо в основі піраміди прямокутний трикутник, а бічні ребра однакові, то вісь піраміди проходить через середину гіпотенузи основи. Ця вісь становить одночасно апофемою бічної грані.
Тобто ця бічна грань вертикальна та її висота одночасно становить висотою піраміди.
Висота піраміди дорівнює 12*cos 30 = 12*(√3/2) = 6√3.
Похожие вопросы