Предмет: Геометрия, автор: elena250775

чему равен угол между диагоналями
прямоугольника,стороны которого 3 и 6см?

Ответы

Автор ответа: kcheeksag
0
Пусть прямоугольник ABCD и точка пересечения его диагоналей (центр круга) - О. Прямой угол, вписанный в круг, опирается на диаметр. Значит диагонали прямоугольника (которые, кстати, равны и в точке пересечения делятся пополам) будут диаметрами круга. Т. е. нам нужно найти половину диагонали прямоугольника, которая и будет равна радиусу описанного круга. Треугольник BOC равносторонний (сделайте рисунок) , т. к. его боковыми сторонами являются половины равных диагоналей прямоугольника и угол при вершине равен 60° (углы при основании равны (180-60)/2=60°, т. е. все углы треугольника равны) . Поэтому радиус круга будет равен стороне прямоугольника: 6 см. Возможно, в задаче будет 2 решения - в зависимости от того, какой угол между диагоналями рассматривать. Но во втором случае - по аналогии
Автор ответа: elena250775
0
спасибо
Похожие вопросы