Предмет: Геометрия,
автор: viktor200194
Докажите, что если у параллелограмма диагональ делит угол на две равные части, то он является ромбом
Ответы
Автор ответа:
0
Как известно - параллелограм - это такой 4-ех угольник, у которого противоположные стороны попарно параллельны, а ромб - это частный случай параллелограмма, у которого все стороны равны между собой. Таким образом, чтобы доказать, что параллелограм - это ромб, нужно доказать, что его две смежные стороны равны между собой.
Если диагональ параллелограмма разделила его угол пополам, то оба полученных треугольника с общей стороной - диагональю будут являться равнобедренными, т. к. их боковые углы - вертикальные при пересечении двух параллельных прямых секущей. А значит смежные стороны параллелограмма равны, а он - ромб.
Похожие вопросы
Предмет: Литература,
автор: gonchrova456
Предмет: Математика,
автор: Аноним
Предмет: Физика,
автор: dinashonkulova
Предмет: Математика,
автор: kusok13
Предмет: Биология,
автор: ValentinaMakeeva