Предмет: Алгебра, автор: длау

Как изменится площадь прямоугольника, если: его длину увеличить на 30%, а ширину уменьшить на 30%?

Ответы

Автор ответа: Вострикова
0

За свойством прямоугольника его площадь находится за формулой: длина х ширина. 
В данном примере площадь будет равна 0.3 х длина х 0.7 х ширина. 
Площадь увеличится в 0.21 раза((0.3 х длина х 0.7 х ширина.)/(длина х ширин

Автор ответа: Аноним
0

была площадь ab
стала (a-0.3a)(b+0.3a)=0.7a*1.3b=0.91ab
Изменение ab-0.91ab=0.09ab.

Тоесть она уменьшилась на 9% 

Автор ответа: uncl95
0

Ответ:

Объяснение:

Площадь прямоугольника

S=a*b

если его длину увеличит на 30% ( 0,3), тогда она станет 130 % (130/100=1,3), длина будет 1,3*а=1,3а

Если ширину уменьшить на 30% она станет 100-30=70% (70/100=0,7)

ширина будет 0,7b

Новая площадь будет

S₁=1,3а*0,7b=0,91ab

S₁-S=0,91ab-ab=-0,009

-0,09*100=-9%

Отрицательное значение говорит об уменьшении

Общая площадь уменьшиться на 9%

Похожие вопросы