Предмет: Геометрия,
автор: IrbisSnow
Докажите, что прямые, содержащие диагонали ромба, являются его осями симметрии.
Рисунок есть и первые 2 пункта в решении тоже присутствуют, но вот что дальше? Как дальше решать? Напишите пожалуйста продолжение.
Приложения:
Ответы
Автор ответа:
0
ход решения неверный!.
нужно доказать, что треугольники, на которые разделился ромб диагоналями равны между собой. для этого вспоминаем свойства диагоналей ромба: они перпендикулярны, в точке пересечения делятся пополам, являются биссектрисами углов. так-же вспоминаем свойства ромба: противоположные углы равны, все стороны равны. исходя из всего этого можно сделать вывод, что треугольники равны, а значит, имея общие стороны, симметричны относительно этих сторон. а эти стороны - диагонали ромба. ч.т.д.
нужно доказать, что треугольники, на которые разделился ромб диагоналями равны между собой. для этого вспоминаем свойства диагоналей ромба: они перпендикулярны, в точке пересечения делятся пополам, являются биссектрисами углов. так-же вспоминаем свойства ромба: противоположные углы равны, все стороны равны. исходя из всего этого можно сделать вывод, что треугольники равны, а значит, имея общие стороны, симметричны относительно этих сторон. а эти стороны - диагонали ромба. ч.т.д.
Похожие вопросы
Предмет: Математика,
автор: kurisai10037
Предмет: Геометрия,
автор: violetazhernakova98
Предмет: Русский язык,
автор: babatayev18
Предмет: Биология,
автор: aleksandra123456788