Предмет: Геометрия,
автор: nik999nik9
В трапеции АВСD диагональ ВD перпендикулярна боковой стороне
АВ
и является биссектрисой угла D. Периметр трапеции АВСD равен 20 см,
угол А
равен 60о. Найдите длину АD. Пожалуйста помогите)
Ответы
Автор ответа:
0
Так как в трапеции угол А =60, угол ABD=90, то угол ADB=30.
Так как BD биссектриса угла D, то угол D=60. Угол А равен углу D, значит трапеция равнобедренная, т. е. AB=CD.
Сумма углов трапеции 360, значит угол B=360-(60+60)/2=120.
Угол CBD=угол B-угол ABD=120-90=30.
Угол BDC тоже равен 30 (т. к. BD биссектриса) , значит треугольник BCD равнобедренный, BC=CD=AB.
Если провести высоту BH, то в треугольнике ABH угол А=60, AHB=90, следовательно угол ABH=30. В прямоугольном треугольнике против угла в 30 лежит катет, равный половине гипотенузы, AH=1/2 AB. Значит AD=BC+2AH=BC+AB=2AB.
Периметр=AB+BC+CD+AD=AB+AB+AB+2AB=5AB.
AB=Периметр/5, AB=20/5=4.
AD=2AB=2*4=8
Так как BD биссектриса угла D, то угол D=60. Угол А равен углу D, значит трапеция равнобедренная, т. е. AB=CD.
Сумма углов трапеции 360, значит угол B=360-(60+60)/2=120.
Угол CBD=угол B-угол ABD=120-90=30.
Угол BDC тоже равен 30 (т. к. BD биссектриса) , значит треугольник BCD равнобедренный, BC=CD=AB.
Если провести высоту BH, то в треугольнике ABH угол А=60, AHB=90, следовательно угол ABH=30. В прямоугольном треугольнике против угла в 30 лежит катет, равный половине гипотенузы, AH=1/2 AB. Значит AD=BC+2AH=BC+AB=2AB.
Периметр=AB+BC+CD+AD=AB+AB+AB+2AB=5AB.
AB=Периметр/5, AB=20/5=4.
AD=2AB=2*4=8
Похожие вопросы
Предмет: Литература,
автор: Аноним
Предмет: Математика,
автор: koptakovavaleria1
Предмет: Математика,
автор: arukeparpieva
Предмет: Геометрия,
автор: generalrz
Предмет: Физика,
автор: Аноним