Предмет: Геометрия,
автор: vbudnik00
основания равнобокой трапеции равны 12см и 20см а диагональ является биссектрисой её тупого угла. найдите площадь трапеции.
Ответы
Автор ответа:
0
Биссектриса трапеции отсекает от него равнобедренный треугольник, а если биссектриса является еще и диагональю, то боковые стороны равнобедренного треугольника равны нижнему основанию (т.к. биссектриса тупого угла).
Итак, имеем равнобокую трапецию с основаниями 12 и 20, боковыми сторонами по 20 см. Можем найти теперь высоту. Перпендикуляры из вершин трапеции, делят нижнее основание на отрезки 4+12+4=20
Из прямоугольного треугольника с катетом 4 и гипотенузой 20, вычислим неизвестный катет (высоту трапеции)
h²=20²-4² h=4√6
S=
Итак, имеем равнобокую трапецию с основаниями 12 и 20, боковыми сторонами по 20 см. Можем найти теперь высоту. Перпендикуляры из вершин трапеции, делят нижнее основание на отрезки 4+12+4=20
Из прямоугольного треугольника с катетом 4 и гипотенузой 20, вычислим неизвестный катет (высоту трапеции)
h²=20²-4² h=4√6
S=
Похожие вопросы
Предмет: Физика,
автор: robert7774845
Предмет: Алгебра,
автор: ururugetlight
Предмет: Английский язык,
автор: Rustem2304
Предмет: Математика,
автор: nastka123