Предмет: Геометрия,
автор: линкинпарк
Докажите, что круги, построенные на сторонах произвольного четырёхугольниках как на диаметрах, полностью покрывают этот четырёхугольник!с решением пжлс!70баллов
Ответы
Автор ответа:
0
Предположим, что внутри выпуклого четырёхугольника ABCD существует область, которую не покрывают круги, построенные на его сторонах как диаметрах.
Пусть точка Е принадлежит этой области.
Чтоб не загромождать рисунок, построим только одну окружность с диметром AD.
Из точки Е опустим на AD перпендикуляр EF. Он пересечёт окружность в точке G.
Любой вписанный в окружность угол, построенный на её диаметре, прямой. Т.е. <AGD = 90°.
Следовательно, <AЕD обязательно будет острым (<AЕD < 90°).
Повторяя аналогичные построения для трёх других сторон, получим 4 острых угла, сумма которых меньше 360°, что невозможно, так как их сумма должна быть равна 360°.
Пришли к противоречию.
Значит, внутри выпуклого четырёхугольника не существует области, которую не покрывают круги, построенные на его сторонах как диаметрах.
Пусть точка Е принадлежит этой области.
Чтоб не загромождать рисунок, построим только одну окружность с диметром AD.
Из точки Е опустим на AD перпендикуляр EF. Он пересечёт окружность в точке G.
Любой вписанный в окружность угол, построенный на её диаметре, прямой. Т.е. <AGD = 90°.
Следовательно, <AЕD обязательно будет острым (<AЕD < 90°).
Повторяя аналогичные построения для трёх других сторон, получим 4 острых угла, сумма которых меньше 360°, что невозможно, так как их сумма должна быть равна 360°.
Пришли к противоречию.
Значит, внутри выпуклого четырёхугольника не существует области, которую не покрывают круги, построенные на его сторонах как диаметрах.
Похожие вопросы
Предмет: Қазақ тiлi,
автор: batyrzhan2010
Предмет: Русский язык,
автор: cokimimiko
Предмет: Литература,
автор: aselaasela171
Предмет: Химия,
автор: mamedovajale