Предмет: Алгебра, автор: aloloy

Логарифмы. Задание на фото.

Приложения:

Ответы

Автор ответа: Artem112
0
 frac{log_336}{log_43} - frac{log_312}{log_{12}3}=
log_3(3cdot3cdot4)log_34-log_312log_312=
\
=(log_33+log_33+log_34)log_34-(log_3(4cdot3))^2=
\
=(1+1+log_34)log_34-(log_34+log_33)^2=
\
=(2+log_34)log_34-(log_34+1)^2=
\
=2log_34+(log_34)^2-(log_34)^2-2log_34-1=-1

log_{ frac{1}{2} }(cos frac{ pi }{6} -sin frac{ pi }{6} )+log_{ frac{1}{2} }(cos frac{ pi }{6}+sin frac{ pi }{6} )=
\
=log_{ frac{1}{2} }(cos frac{ pi }{6} -sin frac{ pi }{6} )(cos frac{ pi }{6}+sin frac{ pi }{6} )=
\
=log_{ frac{1}{2} }(cos^2 frac{ pi }{6} -sin ^2frac{ pi }{6} )=
log_{ frac{1}{2} }(cos frac{ pi }{3} )=log_{ frac{1}{2} }frac{1}{2}=1
\
log_{13}x=1
\
x=13^1=13

f(x)=x^{5+log_2x}-15^{log_{15}2^{-4}}=
x^5cdot x^{log_2x}-2^{-4}=
\
=x^5cdot x^{log_2x}-2^{-4}=
x^5cdot x^{log_2x}-2^{-4}
\
f( frac{1}{2} )=(frac{1}{2})^5cdot (frac{1}{2})^{log_2frac{1}{2}}-2^{-4}=
\
=2^{-5}cdot (frac{1}{2})^{-1}-2^{-4}=2^{-5}cdot 2-2^{-4}=2^{-4}-2^{-4}=0

11^{log_{sqrt{11}}2}+log_3 frac{5+2sqrt{6}}{9}-log_frac{1}{sqrt{3}}( sqrt{3}-sqrt{2})= \ =sqrt{11}^{2log_{ sqrt{11}}2}+log_3 frac{5+2 sqrt{6}}{9}-log_{sqrt{3}}(frac{1}{sqrt{3} - sqrt{2}})= \ =sqrt{11}^{log_{ sqrt{11}}2^2}+log_3 frac{5+2 sqrt{6}}{9}-log_{sqrt{3}}(frac{sqrt{3}+ sqrt{2}}{(sqrt{3}-sqrt{2})(sqrt{3}+sqrt{2})})=
2^2+log_3 frac{5+2 sqrt{6}}{9}-log_{sqrt{3}}(sqrt{3}+ sqrt{2})=
\
=4+log_3 frac{5+2 sqrt{6}}{9}-log_3(sqrt{3}+ sqrt{2})^2=
\
=4+log_3 frac{5+2 sqrt{6}}{9}-log_3(3+2+2sqrt{6}})=
\
=4+log_3 frac{5+2 sqrt{6}}{9(5+2sqrt{6})}=4+log_3 frac{1}{9}=4-2=2

(m^{ frac{log_4n}{log_2n}}cdot n^{ frac{log_4n}{log_2n}})^{2log_{mn}3}=
((mn)^{ frac{log_4n}{log_2n}}}})^{2log_{mn}3}=
\
=((mn)^{ frac{log_n2}{log_n4}}}})^{2log_{mn}3}=((mn)^{log_42}}})^{2log_{mn}3}=
\
=((mn)^{0.5}}}})^{2log_{mn}3}=(mn}}})^{log_{mn}3}=3

log_{ pi ^2} sqrt{a} =1
\
 sqrt{a} = pi ^2
\
a= pi ^4
\
log_{ pi ^2} b =1
\
b= pi ^2
\
log_{ pi ^3}( frac{ab^3}{ pi } )=log_{ pi ^3}( frac{ pi ^4( pi ^2)^3}{ pi } )=log_{ pi ^3}  pi ^9=3

3^{log_9(x+2 sqrt{x-2}-1)}+7^{log_{49}(x-2 sqrt{x-2}-1)}= \ =3^{log_9(x-2+2sqrt{x-2}+1) }+7^{log_{49}(x-2-2sqrt{x-2}+1)}= \ =3^{log_9((sqrt{x-2})^2+2 sqrt{x-2}+1)}+7^{log_{49}(( sqrt{x-2})^2 -2 sqrt{x-2}+1 )}= \ =3^{log_{3^2}( sqrt{x-2}+1)^2 }+7^{log_{7^2}(sqrt{x-2}-1)^2}= \ =3^{log_{3}| sqrt{x-2}+1|}+7^{log_{7}|sqrt{x-2}-1| }= \ = |sqrt{x-2}+1|+|sqrt{x-2}-1|=
|sqrt{2.01-2}+1|+|sqrt{2.01-2}-1|=
\
=|0.1+1|+|0.1-1|=|1.1|+|-0.9|=1.1+0.9=2



Похожие вопросы
Предмет: История, автор: Лиана16031999