Предмет: Алгебра,
автор: Nadezhda9
M — множество однозначных чисел, P — множество нечетныхнатуральных чисел. Из каких чисел состоит пересечение данныхмножеств? Содержатся ли в нем числа -7 и 9?
Ответы
Автор ответа:
0
вобще-то N-множество натуральных чисел,
Z-множество целых чисел
Q- множество рациональных чис.
Целые числа- натуральные числа, противоположные им и 0
Рациональные- целые и дробные числа
Все натуральные числа образуют множество натуральных чисел ( N )
Все целые числа образуют множество целых чисел ( Z )
все рациональные числа образуют множиство рациональных чисел ( Q )
рациональные и иррациональные числа образуют множество действительных чисел ( R)
каждое натуральное число является целым. В свою очередь, множество целых чисел явл. подмножеством множества рациональных чисел.
любое рациональное число можно представить в виде дроби m/n где m - целое число, n- натуральное . число которое нельзя представить ввиде дроби m/n где m - целое число, n- натуральное является иррациональным.
любое иррациональное число можно представить ввиде бесконечной непереодической дроби.
Z-множество целых чисел
Q- множество рациональных чис.
Целые числа- натуральные числа, противоположные им и 0
Рациональные- целые и дробные числа
Все натуральные числа образуют множество натуральных чисел ( N )
Все целые числа образуют множество целых чисел ( Z )
все рациональные числа образуют множиство рациональных чисел ( Q )
рациональные и иррациональные числа образуют множество действительных чисел ( R)
каждое натуральное число является целым. В свою очередь, множество целых чисел явл. подмножеством множества рациональных чисел.
любое рациональное число можно представить в виде дроби m/n где m - целое число, n- натуральное . число которое нельзя представить ввиде дроби m/n где m - целое число, n- натуральное является иррациональным.
любое иррациональное число можно представить ввиде бесконечной непереодической дроби.
Похожие вопросы
Предмет: История,
автор: AlanWalkerLOVE
Предмет: Химия,
автор: malllboroxx
Предмет: География,
автор: Аноним
Предмет: Литература,
автор: sergeevnastrel
Предмет: Алгебра,
автор: Nikitkasmolyakov1