Предмет: Алгебра,
автор: Ольга2605
2. Дана функция y = sin3х. Найдите y' (0).
Ответы
Автор ответа:
0
y=10-3sin(x)+sin(3x)
y'=-3cos(x)+3cos(3x)
y'=0
-3cos(x)+3cos(3x)=0
(4cos^3(x)-3cos(x))-cos(x)=0
4cos^3(x)-4cos(x)=0
cos(x)(cos^2(x)-1)=0
Находим критические точки
1) cos(x)=0 => x=(pi/2)+pi*n
2) cos(x)=±1=> x=(pi/2)+2pi*n ; x=(-pi/2)+2pi*n
Методом интервалом анализируем три эти критические точки и приходим к выводу , что на интервале [0;2pi] наибольшее значение функции при x=(pi/2)+pi
Автор ответа:
0
Находим производную функции:
y'=(sin3x)'=3cos3x
y'(0)=3cos0=3
Ответ: y'(0)=3
Похожие вопросы
Предмет: Українська література,
автор: tramilyam99
Предмет: Физкультура и спорт,
автор: purinaoneg7114
Предмет: Английский язык,
автор: yanabazzz
Предмет: История,
автор: юлька9315