Предмет: Обществознание, автор: RoxieHart

Примеры (факты) взаимодействия экономической и духовной сфер общества 

Ответы

Автор ответа: alenka1210
0
Продажа картин или каких-либо религиозных книг
Сбор средств на строительство церкви
Переход из традиционного в индустриальное общество, когда деньги заменили людям религию
Похожие вопросы
Предмет: Английский язык, автор: snowdropru
History of Computers

Let us take a look at the history of the computers that we know today. The very first calculating device used was the ten fingers of a man’s hands. This, in fact, is why today we count in tens and multiply of tens. Then the abacus was invented, a bead frame in which the beads are moved from left to right. People went on using some form of abacus well into the 16th century, it is being used in some parts of the world because it can be understood without knowing how to read.
During the 17th and 18th centuries many people tried to find easy ways of calculating. J. Napier, a Scotsman, devised a mechanical way of multiplying and dividing, which is how the modern slide rule works. Henry Briggs used Napier’s ideas to produce logarithm which all mathematicians used today.
Calculus, another branch of mathematics, was independently invented by both Sir Isaac Newton, an Englishman, and Leibnitz, a German mathematician. The first real calculating machine appeared in 1820 as the result of several people’s experiments. This type of machine, which saves a great deal of time and reduces the possibility of making mistakes, depends on a ten-toothed gear wheels.
In 1830 Charles Babbage, an Englishman, designed a machine that was called ‘The Analytical Engine’. This machine, which Babbage showed at the Paris Exhibition in 1855, was an attempt to cut out the human being altogether, expert for providing the machine with the necessary facts the problem to be sowed. He never finished this work, but many of his ideas were the basis for building today’s computers.
In 1930, the first analog computer was built by American named Vannevar Bush. The device was used in World War II to help aim guns. Mark I, the name given to the first digital computer, was completed in 1944. The men responsible for this invention were Professor Howard Aiken and some people from IBM. This was the first machine that could figure out long of mathematical problems all at a very fast speed.
In 1946 two engineers at the University of Pennsylvania, J. Eckert and J. Mayshly, built the first digital computer using parts called vacuum tubes. They named their new invention UNIAC. The first generation of computers, which used vacuum tubes, came out in 1950. UNIAC I was an example of these computers which could perform thousand of calculations per second.
In 1960, the second generation of computers was developed and could perform work ten times faster than their predecessors. The reason for this extra speed was the use of transistors instead of vacuum tubes. Second generation computers were smaller, faster and more dependable than first generation computers.
The third-generation computers appeared on the market in 1965. These computers could do a million calculations a second, which is 1000 times faster than the first generation computers. Unlike second-generation computers, these are controlled by tiny integrated circuits and are consequently smaller and more dependable.
Fourth-generation computers have now arrived, and the integrated circuits that are being developed have been greatly reduced in size. This is due to microminiturization, which means that the circuits are much smaller than before; as many as 1000 tiny circuits now fit onto a single chip. A chip is a square or rectangular piece of silicon, usually from 1/10 to ¼ inch, upon which several layers of an integrated circuit are attached or imprinted, after which the circuit is encapsulated in plastic metal. Fourth generation computers are 50 times faster than third-generation computers and can complete approximately 1.000.000 instructions per second.

3. Answer the questions on the text:
1. What was the very first calculating device?
2. What is abacus? When did people begin to use them?
3. When did a lot of people try to find easy ways of calculating?
4. Who used Napier’s ideas to produce logarithm?
5. What was invented by Sir Isaac Newton and Leibnitz?
6. What did Charles Babbage design?
7. When was the first analog computer built? How did people use it?
8. Who built the first digital computer?
9. How did the first generation of computers work?
10. What are the differences between the first and the second computer generations?
11. When did the third-generation computers appear?
Предмет: Информатика, автор: laron2018
Задача 3: Не был предателем...
Гриша уже несколько несколько недель отрабатывает свои навыки в новомодной онлайн-игре про команду космического корабля, вычисляющую предателей среди них. Так как игра очень популярна, появились игроки, которые договариваются между собой о каких-то способах коммуницировать заранее. Таких людей называют заговорщиками.

Заговорщики действуют по следующему алгоритму. В начале игры каждый из заговорщиков пишет в общий чат строку T — ключ шифрования. Далее в течение игры игрок придумывает строку S, записывает её N раз подряд и отправляет в чат. Для того, чтобы получить зашифрованное сообщение, остальным заговорщикам нужно посчитать, сколько раз в этой повторённой N раз строке S встречается ключ шифрования T. Чат обновляется слишком быстро и Гриша не успевает это сделать руками. Помогите Грише решить эту задачу.

Входные данные
В первой строке входных данных записана строка T, содержащая не более 300 символов — ключ шифрования.

Во второй строке записана строка S, её длина также не превосходит 300.

В третьей строке записано целое число N, 1 ≤ N ≤ 5×106 — количество повторений строки S.

Все строки состоят только из заглавных английских букв.

Выходные данные
Программа должна вывести единственное целое число — количество вхождений строки T в строку S, повторённую N раз. Под одним вхождением подразумевается один способ выбрать подстроку, то есть несколько подряд идущих символов строки, совпадающих со строкой T, не меняя порядок следования этих символов.

Система оценивания
Решения, правильно работающие, когда длины строк T и S, а также число N не превосходят 100, будут оцениваться в 60 баллов.
Предмет: Литература, автор: Жучкинс