Предмет: Математика,
автор: yfhrjnbrb
Найти производные dydx данных функций:

Ответы
Автор ответа:
0
y=sinx/(1+cosx)
y`=[cosx(1+cosx)-sinx(-sinx)]/(1+cosx)²=(cosx+cos²x+sin²x(/(1+cosx)²=
=(cosx+1)/(1+cosx)²=1/(1+cosx)
y=tg²x *1/x
y`=2tgx*1/cos²x*1/x+tg²x*(-1/x²)=2tgx/xcos²x -tg²x/x²
y`=[cosx(1+cosx)-sinx(-sinx)]/(1+cosx)²=(cosx+cos²x+sin²x(/(1+cosx)²=
=(cosx+1)/(1+cosx)²=1/(1+cosx)
y=tg²x *1/x
y`=2tgx*1/cos²x*1/x+tg²x*(-1/x²)=2tgx/xcos²x -tg²x/x²
Автор ответа:
0
(2tgx/xcos²x) - (tg²x/x²)
Автор ответа:
0
2tgx*1/cos²x*1/x+tg²x*(-1/x²) а это как записать?
Автор ответа:
0
(2tgx)*(1/cos²x)*(1/x)+(tg²x)*(-1/x²)
Автор ответа:
0
спасибо большое за столь подробное разъяснения :)
Автор ответа:
0
И тебе спасибо
Похожие вопросы
Предмет: Математика,
автор: kustkustovich
Предмет: Информатика,
автор: alexandrbaranov2006
Предмет: География,
автор: sulmalika2007
Предмет: История,
автор: Arents
Предмет: Математика,
автор: МандаринкаКатеринка